Let’s drive the future.
Ray C. Anderson (1934-2011)
Interface, Inc.

• Pioneered business case for corporate sustainability
• Brought industrial ecology to the mainstream
• “America’s Green Industrialist”
Road to “The Ray”
Ray C. Anderson Memorial Highway

- GA-AL state line → Exit 18 on Interstate 85
- Designated April 2014
- Includes I-85 Visitor Information Center
- Troup County, City of LaGrange, City of West Point
"The Ray" Goals, Mission

Better outcomes for communities, the economy & the environment.

Zero deaths
Zero carbon
Zero waste
Liabilities → Assets
Leverage more value
• First public PV4EV in the Southeast

• Important EV charging infrastructure – connects Atlanta & Montgomery

• 8 MWh generated
 6 tons CO2 avoided
Wattway on The Ray

- World’s first DRIVABLE solar road surface
- Pilot on The Ray is 1st in world outside of France
- Minimum 10 yr. durability, all-weather, rain-proof
- Exceeds state average for road surface safety (.98 friction number = 70 skid number)
- 3.5 MWh generated
Unlocking the value in the Road

Generating energy
Solar in the Right-Of-Way

- 1MW ROW solar pilot – online Q3 2018
- Approx. 3,000 panels on 5 acres → 170 homes
- Georgia Power self-build = power to grid
- Pilot on The Ray will be 5th in U.S., 1st in GA
- Pollinator-friendly solar pilot
Turfgrass
Maximum root depth 3-6 inches

Native Grasses & Forbs
Common root depth 4-6 feet

Solar Site Management for Soil, Storm Water, and Pollinator Benefits
Goal: Zero deaths on The Ray

• 20% increase in U.S. road fatalities since 2011
• Over 40,000 people killed on U.S. roads in 2016 – most in 10 years
• Number of road fatalities as % of miles driven is also increasing
• “everyone else’s problem” … $100’s of millions spent to reduce distracted driving, impaired driving, speeding & tailgating
WheelRight tire safety station

- Measures tread depth & tire pressure within seconds - automatic, drive-through
- In U.S., under-inflated tires waste 2B gal. fuel/yr. & increase tail pipe emissions
- WheelRight (UK) pilot on The Ray 1st in U.S. – only tread depth monitoring in the world
Value proposition:

BLIP can impact 89% of U.S. road deaths

(1) Lane visibility
(2) Smart road that collects data digitally
(3) ... that communicates data digitally
(4) ... that communicates through color to “classic” cars
The BLIP Components

TOP COVER + LENS
A top polycarbonate casing focuses the sunlight onto the solar panel to maximise energy capture, while two lens patches help optimise the LED light cones for maximum visibility.

LED + RETROREFLECTOR
Red, green and blue LEDs combine to enable multiple colours. The LEDs are backed on an aluminium base for heat dissipation. The retroreflector ensures lane delineation (redundancy) should the system fail.

SOLAR PANEL
Approximately 100cm² surface area of solar panel is required to generate sufficient power for day and night functionality.

INVERTED-F ANTENNA
For DASH7 communication between stud and control box. Antenna is soldered to the circuit board.

MAIN HOUSING
Made from glass reinforced plastic.

DASH 7, MAGNETOMETER + SENSORS CIRCUIT BOARD

BATTERY
Approximate volume: 33cm³
REQUIRED TECHNOLOGIES

SYSTEM OVERVIEW

1. **ROAD STUDS**
 - Road studs are set 12-24m apart along all lane boundaries. Each stud detects a ‘blip’ when a vehicle passes at a particular point in time, and each ‘blip’ is then transmitted to a control box.

2. **CONTROL BOX**
 - Control boxes, repeated every mile along the side of the road, collect the ‘blips’ transmitted by the road studs within that section of road. The control boxes process a series of ‘blips’ to calculate vehicle position and speed. They can also communicate with the outside world and be programmed remotely using cellular communication.

3. **PREDICTIVE TRAFFIC MODEL**
 - With the control box gathering snapshots of vehicle speeds and positions, it is able to produce a traffic model that predicts movements of each vehicle on the road.

4. **SIGNAL**
 - The control box is programmed to recognize particular situations in the traffic model where a road stud should produce a signal - for example, if the control box recognizes a case of tailgating, it communicates to the appropriate road studs to change colour (e.g., to flash red).
Concepts for Future Consideration

- Integrated solar noise barriers
- Right-of-way wind generation
- Drone monitoring
- Sensor network for safety & sustainability
- Connected vehicle pilot
- Sustainable road materials
- Right-of-way farming
THE RAY

Let's drive the future.